

# **Colloquium**

Mon, **June 17**, 2024

15:15 - 17:30

Freie Universität Berlin SupraFAB, Room 201 (Altensteinstr. 23a, 14195 Berlin)

### **Prof. Irene Coin** – Leipzig University, Institute of Biochemistry, Germany

#### Genetic code expansion for structural and dynamic studies of membrane receptors in living cells

We apply genetically encoded non-canonical amino acids (ncAAs) to address general questions about functioning of G protein-coupled receptors (GPCRs) directly from the natural environment of the live mammalian cell. On one hand, we use photo-and chemical crosslinking amino acids [1] to define the topology of GPCR interactions both with ligands (especially peptide ligands) [2] and intracellular partners [3]. On the other hand, we have engineered enhanced tRNAs that have enabled efficient incorporation of last generation ncAAs for bioorthogonal chemistry into challenging protein targets [4]. In this way, we could achieve quantitative single-residue labeling of sensitive GPCR regions, such as the loops, with small organic fluorescent probes [5] and put the basis for the development of smallsize fluorescent sensors for in-cell studies of GPCR dynamics.

[1] Coin I\*. Curr. Opin. Chem. Biol., 2018, 46:156-163.

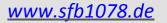
[2] Seidel L, Zarzycka B, Zaidi SA, Katritch V\*, Coin I\*. eLIFE, 2017, 6, 27711.

[3] Aydin Y, Böttke T, Lam JH, Ernicke S, Fortmann A, Tretbar M, Zarzycka B, Gurevich VV, Katritch V\*, Coin I\*. Nat. Commun. 2023, 14:1151.

[4] Serfling R, Lorenz C, Etzel M, Schicht G, Böttke T, Mörl M, Coin I\*. Nucleic Acids Res. 2018, 46, 1-10 (2018).

[5] Serfling R, Seidel L, Bock A, Lohse MJ, Annibale P, Coin I\*. ACS Chem. Biol. 2019, 14:1141-1149.

Supported by DFG grants CO822/2-1 (Emmy Noether), CO822/3-1, CO822/3-2, and CRC 1423, project number 421152132, subproject B04 to IC.


## Prof. Benjamin Kaupp – Max-Planck Institute MPINAT, Göttingen & LIMES, Bonn University, Germany

#### Sperm chemotaxis – signaling at the physical limit

Sperm from marine invertebrates navigate to the egg in a chemoattractant gradient. The sperm flagellum serves as an antenna that registers the chemoattractant, as a motor that propels the cell, and as a rudder that steers sperm in the chemical landscape. Sperm are exquisitely sensitive: they can register the binding of a single chemoattractant molecule and translate binding events into a Ca<sup>2+</sup> response that controls the flagellar beat and, thereby, the steering response. I will discuss the cGMP-signaling pathway that endows sperm with single-molecule sensitivity.

The dynamics of cellular responses, including changes in voltage, pHi, and Ca<sup>2+</sup>, is optically recorded in motile sperm using rapid kinetic techniques including caged compounds. We find that, during navigation, sperm perform a surprisingly rich variety of computational operations; they can count, differentiate, integrate, and reset the signaling pathway. Furthermore, we decipher how such cell algebra is embodied by biochemical and electrical mechanisms.

*Coffee and tea will be available during the break at 16:15.* 



